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(Y) dy 

by some other method. Then, for example, 

+(y) siny dy = f (1 + sin y)p(y) dy - f 0(y)dy. 

A. H. STROTJD 

18[P, X1.-L. S. PONTRYAGIN, V. G. BOLTYANSKII, R. V. GAMKRELIDZE & E. F. 
MISHCHENKO, The Mathematical Theory of Optimal Processes, John Wiley & 
Sons, Inc., New York, 1962, viii + 360 p., 23 cm. Price $11.95. 

One of the major problems of the modern mathematical theory of control 
processes can be posed in the following terms: "Given a vector differential equation 
dx/dt = g(x, y), x(0) = c, where x represents the state of a physical system at 
time t, the state vector, and y(t) represents the control vector, determine y(t) so 
as to minimize a given scalar functional J f- h(x, y, t) dt, where x and y are 

subject to local constraints of the form ri(x, y) < 0, i = 1, 2, * , N, global 
constraints of the form Jo hi(x, y) dt < k*, and terminal conditions of the form 
fi(x(T), y(T), T) ? 0." In some cases of importance, T itself depends upon the 
history of the process, T - T(x, y), and, indeed, may be the quantity we wish to 
minimize. 

The book under review represents a fine and substantial contribution to a new 
mathematical domain. The major theme of the work is the "maximum principle," 
an analytic condition which provides important information concerning the struc- 
ture of extremals, in the terminology of the calculus of variations, or of optimal 
policies, in the parlance of dynamic programming and control theory. 

Since the book is an excellent one that will be widely read and used, it is worth- 
while to analyze its objectives and results carefully within the framework of the 
classical theory of the calculus of variations, and with the desiderata of modern 
control theory in mind. 

In the simplest version of classical variational theory, there are no local or 
global constraints. The first variation yields the Euler equation, generally a non- 
linear differential equation, with two-point boundary conditions. For a variety of 
reasons, this direct approach is seldom effective computationally. If global con- 
straints are present, Lagrange multipliers may be used to reduce the problem to 
one without constraints, at the expense of further computational difficulties. 

If local constraints of the type indicated above are present, as they are in a large 
number of the most important classes of processes, the situation is even more 
complex. This is due to the fact that sometimes the Euler equation holds and some- 
times the constraints determine the extremal, or policy. Hence, the analytic and 
computational difficulties that existed before, as far as effective algorithms for the 
solution are concerned, are now compounded. 

Nevertheless, analogues and extensions of the classical results can be obtained. 
The pioneering work is that of Valentine [1]. Results of Valentine were used by 
Hestenes in some unpublished work on constrained trajectories in 1949. In 1961 
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Berkovitz [2] showed how the maximum principle and results of greater generality 
could be obtained from Valentine's work combined with the classical calculus of 
variations. 

The principal point of all this discussion is that the maximum principle does not 
provide us with any analytic approaches which we did not already possess, and does 
not seem to aid us in the fundamental objective of providing numerical answers to 
numerical questions. Unfortunately, at the present time, we possess no straight- 
forward approach to the effective analytic solution of constrained variational prob- 
lems. 

This does not diminish the value of the book. Its very elegant presentation of 
results pertaining to extensions of classical problems and its consideration of proc- 
esses involving time delays and stochastic elements will have a very stimulating 
effect upon research in this new field. It will serve the very useful purpose of fo- 
cussing attention upon new, fascinating, and significant areas of investigation. 

Let us now discuss some of the contents of the volume, and present some de- 
tailed comments. The authors present a general treatment of the control process 
formulated above, using the maximum principle (which is, as Berkovitz points 
but, a restatement of the Weierstrass condition as adapted by Valentine), and 
discuss some quite interesting examples in detail. In particular, they consider the 
"bang-bang" control process, where dx/dt = Ax + y, y is constrained by the con- 
ditions that its components can assume only the values :1:, and it is desired to 
reach the origin in minimum time. Following this, they discuss a control process 
involving retardation (work of Kharatishvili), pursuit processes (work of Keleno- 
zheridze), some interesting applications to approximation theory, problenms in- 
volving constraints on state variables, and finally some stochastic control processes. 
The discussion of pursuit and stochastic control seems far more difficult and in- 
volved than one based upon the functional equation approach of dynamic pro- 
gramming, and is based upon "open loop" control rather than feedback control. 

The authors indicate the intimate relation between dynamic programning and 
the calculus of variations, and state (p. 7): ". . . Thus, Bellman's comiderations 
yield a good heuristic method, rather than a mathematical solution of the problem," 
and again (p. 73): "Thus, even in the simplest examples, the assumptions which 
must be made in order to derive Bellman's equations do not hold." 

These statements provoke some further remarks. In the first place, if one refers 
to Berkovitz's article, it will be seen that the equations derived from the functional 
equation approach can be made completely rigorous in a number of cases. In those 
cases where lines of discontinuity, or more generally, surfaces of discontinuity exist 
("switching surfaces"), we have a situation similar to the existence of shocks in 
hydrodynamics. The classical equations exist on both sides of the shock, and the 
problem is now that of continuation of the solution from one region to the other. 

Perhaps even more important is the following consideration. At the moment, 
we intend to base computational algorithms on the use of a digital computer. 
Consequently, there is some merit in formulating control processes in discrete 
terms from the beginning. If we proceed in this fashion, all problems of existence of 
extremals vanish, and we face directly the fundamental problems of numerical 
solution and determination of the structure of optimal policies. Dynamic program- 
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ming can now be applied in a uniform fashion to the study of deterministic, sto- 
chastic, and adaptive control processes. If we so desire, we can establish that various 
limits exist as the discrete process merges into a continuous one. 

The digital computer can be used for mathematical experimentation, with the 
hope of discerning the structure of optimal policies from the solution of particular 
problems. 

Let us finally note that the authors make no mention of a number of other 
techniques available for the study of constrained variational problems. Such al- 
ternative techniques include: function-space methods [3]; gradient techniques of 
the type used by Bryson and Kelley [4]; quasilinearization [5]; and techniques 
based on the Neyman-Pearson lemma [6]. 

Taking into account all that has been said, there is no question that this book 
is an important contribution to the theory of control processes: one that must be 
read by everyone working in that field. Its translation is a fitting tribute to a great 
mathematician and his distinguished colleagues. 

RICHARD BELLMAN 
The RAND Corporation 
Santa Monica, California 
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The avowed intent of this book is to provide methods for analyzing pulse 
systems and their properties, using insofar as possible techniques that are already 
familiar in the analysis of continuous systems. Unfortunately, the book is, in my 
opinion, very unsuccessful in its attempts to meet its aim. 

A book of this type should have its subject matter clearly divided into three 
sections: mathematical material (for example, the discrete Laplace transformation 
and its application to linear difference equations); systems concepts, such as prin- 
ciples of pulse modulation and digital feedback theory; and, if desired, component 
descriptions. However, the present book contains a confused mixture of all three. 
Chapter I, which is supposed to be an introduction to pulse systems, very soon 
dives into complicated circuit diagrams for the control of electrical machinery, 
electronic circuits, temperature, and some amazingly intricate mechanical systems, 
with a very unsatisfactory discussion of modulation theory. Chapter II, which is 
intended to provide the mathematical background for the sequel, is cluttered with 
a great number of trivial examples and inelegant theorems; moreover, hardly any 


